A NEW SYSTEAI OW SUBMARINE ATTACK.
 To The Edroor of Ensinkering.

Sru,-Agreeable to my letter of hareh 11th, I now propose to describe the general features of my new system of submarine attek.

In the communication alluded ${ }^{\text {娄to }}$, I stated as a general proposition: that a heart body of regular form, of any density whatever, moving through the atmosphere, is inexorably uncer the influence of the earth's attraction, and therefore deseribes a foreshortened parabolic curve during thts flight; while a submerged body, the weight of whith is equal with the weight of the water it disphaces, is frot affected by the earth's atiraction; "and that cosequeatly, if put in
tion of its apex and in the line of its axis horizontally, or on an incline, will, owing to the inertia and the nearly imeompressible nature of water, more readily displace the column which rests upon and depresses its upper half, than the column from below with its lifting tendency. Consequently, the course of the conical body will le diverted from the straight line upwards, describing a curre nearly elliptical, and quite sudden, if the speed be great. A cylinder with semispherical ends will, from the same cause, ascend to the surface if moved in the lime of its axis; while a cylinder with fat ends will take a downwaxd course, gradually increasing its inclination until at last the axis assumes a verti:al position. Obviously, the lower part of the forward flat end encounters a greater re. sistance than the upece part; bence the lower half of
no speciat TMt Whin ordinary ranges, the plan i attack at distiaces not much exceeding 500 ft ., un the sea be very smooth.
The vis virat of a shell 15 in in diameter, of sut length that it displaces 500 lb . of water, may be rea estimated if we suppose the charge of powder in gum to be so regulated that the shell will enter water at the required rate of 400 ft . per second; t 400^{2}
$=234$ S: $\times 500=1,172,000$ foot-pournds. A cj drical body 15 in . in diameter, with semi-spherical e moving at a rate of 50 ft . per second under wi requires a constant motive force of somewlat less t 400 lb . Assuming, then, that the shell passes thro 120 ft . of water-the mean distance represented

motion under the surface of a quiescent luid of anlimited extent, such a body will continue tognove in a straight line until the motive energy whislr propels it, becomes less than the resisting force of the surrounding medium.

In vitue of the first part of this general proposition, a heavy body may be projected in such a manner that the temination of its trajectory shall make any desirable angle, less than 45°, with the horizontal line, independently of the leragth of the ofrord of the trajeetory. In other words, the bocy winy be projected at variable distances over water, and fet strike its surface at any desirable angle. This mportant result is effected simply by varying the relative proportion between elevation and strength of charge. The second part of the stated general propesition is of equal innportance. It points to the fact that the trajectory may be extended in a straight line $\frac{1}{\text { ma }}$ der water, to any desirable distance, irrespective of the speed of the jrojectile. Aceordingty, a shell asay be projected from one ressel towards another within moderate ranges, in such a manner that it shall dip into the water at a considerable distance from, or close io the vessel assailed, independently of the distance between the two vessels. Also that the shell may be projected at such an angle that the prolongation of its trajegory in a straight line, after contact with the water, shall strike the hull of the ressel assailed, at any desinble depth below the surface.

That a certain relation between cunge and elevation emables us to project a "pherical shot, with considerable accuracy, in such a manner as of strike the water at any desimable distance from an gpponent's vessel, at angles within as̃, will be admitton. Hence, if the trajectory be such that its extension in a straight line from the point of contact with the ater leads to the hull of the resscl assailed, the laterer will be hit-on condition, however, that the shot ${ }^{\text {sin }}$ not diverted on watering ine water; and provined its ris viva be suffcient to orercome the resistance encomatered during its passage through the water. These indispensable conditions, which apparently canrot?e complied with point to the ditheulty of hitting ab ressel below the water line. And if we suppose that the projectile is not spherical, another serious diftculty preseats itself. An clonguted body will not bend to the curvature of the trajectory, but retain during ifs flight the same juclination as the gun from which it has been projected; hence it wihl fall hearly that on the surface of the water at the end of its course.
Agrecable to our general proposition, a regular body, weighung as much as the water it displaces, is indepeudent of the earth's attraction; bat there is another force which, notwithstandiag the absence of any gravitating teudency, will cause a bod of regular form moving under water to deviate from a straight line
the transyerse section of the eylinder suffers an excess of retardation, which occasions the downward course described.
The question whether the apparently insuperable difficulties thus pointed out may be overcome by mechanical expedients, has, as already stated, occupied my attention for a long time; and numerous experiments have been male to test the efficacy of devices resorted to on theoretical considerations. But it is not my parpose to enter on a description of these devices at present, ou grounds that will appear hereafter. Aecordingly, I will assmme that the axis of the elonvated projectile tharing its flight through the air is parallel with the trajectory, and that on entering the water the projectile will not be diverted, but continue to move under the surface, with the same inclination it had on coming in contact with the dense medinm.

The accompanying sketch presents the main features of my new system of submarine attack so distinctly, that it will be superfloous to enter on a general explanation of the nature of the scheme. It may be well to state, however, that he elongated shell is charged with dynamite and provided with a percussion lock and trigger, to be actuated as described in my former communication relative to the self-acting torpedo.
It is well known that numerous plans have been suggested, during the last few years, for fining under Water, for the purpose of piercing the hull of ironelad vessels belos the point protected by the armour. In sereral instances these plans have been carried into practiee, with the invariable result that the resistance of the water has been found so great, even at very short distances, that an ordinary wooden hull has proved to be impenetrable. The plan now under consideration bears ug resemblance to these projects. In the first place, the altack is made at a distance; and, secondly, the force of the missile on reaching its destination, need only be suflicient to actuate the trigger which canses the igation of the explosive charge.
Apart from the ilheoretical considerations relating to the course of the elongated shell under water, the practical question of motiet polet to propel the shell presents itself at the first step in the investigation. It is hardly necessary to state that the foree relied upon is the vis yiva poseessed by the shell on coming in contact with the waler. Before estimating this force it will be proper to call attention to the lact, that my ness system to be effective and a practical success, does not call for attack is a great distance, provided the vessel from which the missile is projected has greater speed that the opponent, and at the same time adequate protection against his artillery. No reason whatever can be assigned why the attack should not be successful, and the destruction of the vessel assailed as certain if the distance of 300 ft . were the limit, as if a range of 5000 ft . better suited the new svitem. It will he
the accompanying diagram-wre have a resistance $120 \times 400=48,000$ foot-pounds to overcome. motive foree, it will thus be seen, is more than 1 times greater than the resistance; hence no doubt be raised as to the adequacy of the motive power nished by the vis viva of the shell. It should be served, that the resistance is very great at first, that the speed of the shell dininishes in a very ri ratio; but it mould be futile to present a formula pressing the ratio of speed and resistance since form of the boin is the chief element in the calc tion. Suffice it to say, that while the resistance aga a blunt body is so great that it can hardly be o come, one proided with a sharp point enters the w with mach fasility, even at the raie of 400 it. second. The sassage of the shell through the w will, therefore, be sufficiently rapid to reach the des object in prgper time.
With reference to the gua, it should be born mind, that tis very low speed of the shell, and consequent small charge of porder needed, rel heavy metal unnecessary. Besides, slow burning c powder contained in cellular cartridges, will be ployed for the parpose of checking rapid ignition, in order to suscain a uniform pressare during the charge. By reference to our sketch it will be that the guns are loaded from below, and for purpose so arranged as to admit of being depre 60°. Gua carriages are dispensed with, the trunn being suspended by adjustable pendulum links see under the turretroof. The recoil is checked by bu attached to the turret wall in rear of the breach.

I feel called upon to state, that loading guns bo deck, as here shown, was planned by me, and draw representing this method exhibited in New York ser years before it was claimed by certain American neers as their invention.
Respecting the safety of the charge in the shell ignition durits the disclarge, it will be well to serve that efacient means have been devised to pre such an accident. With reference to the calilire, erident that this system of attack calls for dimeu: that will admis a shell of sufficient capacity to con a charge whica by its explosion will destroy a class ship of war built on the cellular plan. Not short of 300 H . of dynamite will suffice for this parf hence nothing less than 15 in . calibre will ans The American and Swedish 15 in. guns are admi calculated for the purpose, although they are um sarily heavy.

Curopean savans, especially certain Swedish artillerists who have criticised my adyocacy of the smooth-bore gan, will understand on looking into matter, why ${ }^{\text {f }}$ have persisted in advising the Scan vians to carry this large calibre in their mo vians to carry has large calore in against
no cause to fear the Prussian König Wiheim or Friederich der Grosse, when their ports are defended by ressels armed with guns by means of which 300 lb . of dynamite may be exploded under the lualls of the intraders.
The important question of hitting the iutended ob ject will be best, answered by a carctul examination of the accompanying diagram, which caunot iail to con vince naval men that, in moderate weather, the elongated shell may be made to dip at the proper distance from an opponeut's vessel. Thie diagram clearly shows that no great accuracy is called for, and that the sheil may dip at yarious distances from the vessel assailed and yet strike the hull. It shonld be observed that the rertical scale of the diagram is different from that of the horizontal, in order not to place the vessels ton far apart for the limited size of this page; consequently the trajectory shown is distorted.

The turret, it may be briefly noticed, in which the light 15 in . shcll guns are monnted, is composed of flat wrought-iron plates forming a square box, wide enough to necommodate the two pieces, suspended as already stated, by peadulum lisks secured uuder the turret roof. A massive central shaft of wrought iron supports the square boxs, on the plan adopted in the monitor turrets. The vessel designed to earry the rotating square box with its light shell guns is a mere iron hall crammed with motive power, in order to insure a highler speed than that of existing ironclad ships of war. The midship section is triangular, and the bow raking, as indicated by our sketch. The overhanging sides and deck are lieavily arnoured.
Permit me to add, for the information of your readers, that I intend to make a formal offer, muder certain stipulations, to furnish, at my own cost and risk, a switt screw vessel provided with a pair of 15 in . snoothrbore guns, and the necessary apparatus for sinking by submariue explosion, a vessel of the average draught of the ironclad fleet of Fagland, while such a vessel is being towed at the greatest speed possible, or performing whatever evolutions her owner may choose, with the distinct uderstanding that the attack shall not be made at a less distance than 500 ft . Accordingly, it has not been my purpose on this occasion, to enter into a full description of ny new system of submarine atfack. It may be well, however, to define clearly what the scleme is intended to accomplish. If a first-class swift ironchad slijp, say the Derastation, unassisted by other craft, will meet in open water a vessel constructed agreeably to the new system, it is contended that the latter will siuk Me brenst-work monitor in spite of her gans, aud nolwithstanding evolutions designed to avoid the submarine missile.

Yours truly,
New York, March 27, 1870.
The Dbs Mowns Maliex Ratiroan, Iowis, U.S.aubbseriptions are invitel by Messrs. Chad wicks, Adamson, Collier, and C_{0}. for an issue of 8 per cent. mortyage bonds to the amount of 2,009,000 dols., of the Des Moincs Vatley Raitrond, lowa. The bonds, which are of 1000 dols eack, and issued
at the price of 9 ja per cent., are a first charge on the line snd on 365,000 acres of land, and aro redoemablo at par in 1893.

Deas. of Writuan W. Corgrgix.-This well-kuawn and highly esteemed citizen of New York died af his residence, on Washington Hhights, on the 17 th wiltu, of fyphoid fover. Mr. Cornell began iffe depending entirely upon his own encrgirs. He served a regular apprenticestip of seven years nt the buinass in which he subsequently beeame distinguished. In isity, in partuership with his brother, J. B. Cornell, he retablished his iron foundy, employing at frst, by reason of the small expital possessed, but one man. The origimel manafactory tras loented in Center-strect. Here the businces
of the deceasch graduall increased until at the end of ton of the deceasch gradunlly inereased until at the end of ten rears it hat attained to such harge proportions that it was
necessary to more to another foenlity. During this year the necessary to more to another thenlity. During this year the
fimm comstrued their great fondry in Trentr-sisth.street, bum eonstructed thicir qreat fonndry in Twentr-sixth-street,
betwen Teath and Elerenth arenueg, and which has since Comained the principal one owned by the brothers. Atr. Comelis name is conspicuously associated with the progress of the use of iron as a buildirg material, many of hae best known edilices in the coming having been consteucted by
him. Among them we ean name the Tnited States Custom Houge at Saramnah, Ga, the Sum Athontic Mataral Insumanen Companyy, A. T. Stetsartis, IM. B. Clafin and Go.*, Blank of Ners Tork, bank of Commores. Union Bank, Ball and Black's and the Neze Jorth Iferald buihtinge. These are but at few of the wanny fine shrtetures which will long are buat a few monts to the skill of the firm of J. B. and W. W, Compelt. Indeed, owning as the deeensed difi, the most extensire and completely equipped works in the United States for the construction of freproof buildiay, it is not surprising that he, rilh his brother, held the foremost nosition sumong out ron founders. In his prisate life Mr. Compen was distint guished for many sterline and amiable traits of clungcter and was sery hiberal in his gifts, especially to the Methodist Chureh, of which he was a momp especinlly to the Methodis

THE GENERATION OF STFAM BY GAS.

Tus dificalty, and in some cases the imporsibility, of em ploying steam power in wareloouses and similar buildings has long been felt. The difficulties have arisen from the circumstance that where the use of the engine is only oces sional during the day, the expense of maintaining steam is very considerable. Further, the extra preminms charged by the insurance companies are very heavy where an ordinary steam engine and boiler are even permitted to bo usen in warehonses. Space atso is sometimes sumb an object in this class of buildings, that the ase of steam is for this yeasnn alone prohibited. All these difficulties, homever, are overtome in a compact and well-arranged system of engine and boiler, which has been designed by Mr. Arthur Jackson, of No. 1, Loman-street, Southwark. In this apparatas the steam in generated and maintained by gat, and is so safe that the insurance compautes do not require any additionnl premium. The apparatus consists of a eylindrical tubular boiler heated by jets of gas mixed with air, and from which steam is supplied to a small vertical eylinder engitue, which works the hoist, lift, or crane, as the case may be. The engine and boiler are in some cases carried on a small bedilate, and at once embody compactness, safety, cleanliness,
couromy, and simplicity. After the stenm. has once been raised to the working pressure, wanlly 60 lb ., it is manintained at a pressure of 40 llb . while the engine is out of use, by a fexy jets of gas. This renders the apparatus eapecially suitable for intermitfent work, such as is common to warehorses and similar establishments. About thirty of these eagnes have been laid down in and about the City ciuring the past three years, and are all working satisfactority. The most recent example of these engines is one which has just been erected in the Crutched Friars fen warehouses of the East and West India Dock Company in Hart-street, Mark Lane, and whick we recently inspectecl. 'Ihs apparatus is used for the purpose of lifting the teas, the woric having been hitherto effected by manull labom, as steam has been strictly prohibited in the building. In the present instance, the npparatus is fixed on the fourth floor of the bailding, which is five stories high, exclasive of a gronnd floor and basement. The boiler is placed in a corragated irom house, carried on canfilevers, outside the building, the engine and apparatits being just inside the warehouse. The boiler, whicli is of the vertical tubular tyue, is of 2 horse power, and occupies an area of 3 ft . square, it is 2 ft . in diameter, has 164 tubes, and is heated by gas mixed with air, stean being generated very rapidly. The crane or hoist is worked by a virtical cylinder 6 in. diameter and 10 in , stroke. It operates a eage
$7 \mathrm{ft} . \mathrm{by} 6 \mathrm{ft} 6 \mathrm{in}$., and which is raised by the encine and lowered by grovity, a friction brake being atfached to the chain barrel of the engine for that porpose. Up to the present time the dock atuthorities have been pleased to go on warchousing their beas in the style of their forcfathers, the first importers. In this special portion of the warehonces thircy-six men have been employed from time immenorial in lifting tea from fioor to foor by the stading
process. Now ak one foll swoop Mir. Jackson has knocked off thinty-four, retaining only one to texd the hoist below and one to drive the engine above. The cost of working is very morlerate, and waries with the work done and the cost of gita per thousand feot. With an engine such as that we bave just deseribed the cost is found to be about 5s. par day for gas. Or, fo bring it into lower terms still, in constant working the boiler consumes 100 ft . of gas per horse
power per hour; fow much less is required depouds upon the time the exgine is in actual work During our visit, steam was maintained at 75 lh ., and the hoist was in active operalion and worked rery satisfactorily. There are unquestionably many adrantages attending this mothod of generating stean, to which its incrensing adoption bears testimony. Another important point shouid not be lost sight of and that is that the adoption of this method of working hoists and craves, if more general, would tend, by the rapidity of delivery it ensures, to facilitate the circula-
tion of heavy vehicles in some of our over-crowded tion of heavy
thoronghfares.
Brunes's Thmber Ronf at Biraingimam-The Snow IHill Station of the Groat Western Railway at Birmiagham,
with which most of cur readers are doubtless faniliar is with which most of sur readers are doubtless familuar, is
about to be removerl, together with Bruwer's fing fjwher roof. This structure will be supergeded by an iron roof mid new offices of more commodions character. The old roof is an excellent exanmie of carpentry, and, as such, deserves furlher notice at our hands whieh we purpose slontly to give it.
 tion on Friday night, on ihe oeeasion of Professor Huxley's lecture on the horse, there was exhibited a number of large with ed ged fhint stones, some with frightfully jagged edges These were picked up from the roads as specimens of the eruelty inflicted on horses, at the present time. The inseription upon the black board to which they were ntituched was ns follows:--"Instruments of Horse Torture cmoloyed in the Nibeteenth Ceniary on the Rends of the South of Xontion, within the Four-mile radius of Charing-etoss. April, 1870." The indignation folt was very great that such frighthtul barbarisma hould be practised nt the same time, when by the ndoption of tho steam rollor by the pablie bodices all these flatp stones couk be pressed into the earth, and a perfeetly fat and even road bo made in a fow hours. It is to be hopea har the use of the sheam rollar compulsory on all publie
bodies laving flown hose sfones.

Wes publish, this reek, the genaral. drawings and some the detuils of a bridge tesigned by the late John A. 3? bling, and which aithough never erected, will be foumd much interest on account of the care with which the eng neer had worked out all the details of a structure in whic his system of the "Parabolic Truss" was adoptent. The thr openings of the bridge are spanned by two pafallel con tinuous trusses 1184 ft . loug, placed 14 ft apart io tl clear, and caryying the roadway upon their lower chord The superstructure is bolted down to one pirn, and left fr to move upon rollersover the others. The toweers which carl the cabless at the middle pier form a part of the novab structure, and are, therefore, free to move with the truss under variatigus of temperature. The roadriay is sopported transyerse rolled girders placerl 5 ft. apart, 12 in . in dept and $21 \mathrm{ft}$.5 in . long. Between these girders, and underneat the rails trussed timber stringers are placed, and nupon the are laid the longitudinal sleepers of the permauent, wr Every alternate trunsverse girder is suspended to the cabl of the arasses, and all the girders are rivetted to the low chord of the main girciers. Each of the trusses is dont throughout its length, the posts being separated by an is torval of 2 ft ., in the centre of which apace tho cables a suspended, the suspenders hang also in the sume plan as well as the rope stays passing aver the towers below il cables. In the trusses the arches are relied upon for givin strength and rigitity, and the cables for strength shon and the rope stays, six to each tower, to increase th trength of the structure as well as add to its stiffuess. y inteud to publish further details of this bridge next week.
pERKINS'S HIGH-PRESSURE MARINE ENGINES.
Wh subjoin an engraving of a pair of indieator diagrax taken from the engines fitwed by Messrs, A. M. Perking an Son, of Seaford-atrect, to the tagboat "Filga." We gave a account of the trial of these engines on page $23 f$ of our las

number, and as we then described their eoustruction, all wr need do here is to give the particulars relating to the tw diagramas we nowt publish. One of these diagrams wes takel from the forward and the other from the affengine, and tht particulars are as follows:

Formard
Initial pressure per squnte inch
188.7

Mean pressure per square inch $\begin{aligned} & \text { pquarc inch } \\ & \text { in }\end{aligned}$ Aean pressura per square inch in
small cylinder samait cyinder
kean pressure per square in. in large
eylinders eylinders
Revolutions jer minute
Mevaluhons per minute
957
25.7

2801 bz pex

